Note on Omega Polynomial
نویسنده
چکیده
Omega polynomial, counting opposite edge strips ops, was proposed by Diudea to describe cycle-containing molecular structures, particularly those associated with nanostructures. In this paper, some theoretical aspects are evidenced and particular cases are illustrated.
منابع مشابه
Computing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes
The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G) euv nu (e) nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...
متن کاملOn Classifications of Random Polynomials
Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...
متن کاملOn Counting Polynomials of Some Nanostructures
The Omega polynomial(x) was recently proposed by Diudea, based on the length of strips in given graph G. The Sadhana polynomial has been defined to evaluate the Sadhana index of a molecular graph. The PI polynomial is another molecular descriptor. In this paper we compute these three polynomials for some infinite classes of nanostructures.
متن کاملOmega and PIv Polynomial in Dyck Graph-like Z(8)-Unit Networks
Design of crystal-like lattices can be achieved by using some net operations. Hypothetical networks, thus obtained, can be characterized in their topology by various counting polynomials and topological indices derived from them. The networks herein presented are related to the Dyck graph and described in terms of Omega polynomial and PIv polynomials.
متن کامل